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It is shown that the ground state of a Yang-Mills theory for gravity proposed 
by us induces in the classical limit the closed Einstein universe and its tangent 
space (Minkowski space), respectively. 

In a previous paper  we introduced a model where the linearized Einstein 
equations can be reached as the classical limit of  a Yang-Mills-type gauge 
field theory of  the S U ( 2 ) x  U(1) spin-transformation group (Dehnen and 
Ghaboussi ,  1985): 

~p'= U~b, U = exp(iha(x~)~'a), ~'a =�89176174 "a (1) 

(a -- O, 1, 2, 3). We began with a Minkowski background r /~  and deduced 
the curve space- t ime metric as an effective classical field by the identification 

g ~  = ~?"bto~tO~b (2) 

with ~?ab = d iag( -1 ,  1, 1, 1) as the "Minkowski"- type metric of  the group 
space; ~o.a are the gauge potentials defined by the covariant derivative 
D . = O . + i g ~ o . ~ r  ~ belonging to (1). In view of (2), the gauge coupling 
constant g has the dimension of  a reciprocal length and the U(1) potential 
tO.o determines the timelike part  of  the metric, whereas the SU(2) potentials 
w.i (i = 1, 2, 3) give the spacelike part. In this sense Einstein's theory of 
gravity is understood as a purely classical theory resulting from a micro- 
scopic Yang-Mills  structure for gravity (Dehnen and Ghaboussi ,  1986). 

In this connection the question arises, which metric is constructed by 
(0) (o) 

the p u r e  gauge potentials w ~ with vanishing field strength F ~ a - 0 ?  The 
inner consistency of the theory requires that the Minkowski metric ~/~ can 
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be reconstructed from (2) and it is to be expected that the Minkowski metric 
follows from the pure gauge potentials because ~/N~ is also a kind of pure 
gauge potential with vanishing curvature tensor (Dehnen and Ghaboussi, 
1987b). 

In the following we show that indeed in the case of pure gauge potentials 
with ]hal<< 1 the Minkowski background is reached. For arbitrary large 
gauge functions A~ the closed Einstein universe results, with the mentioned 
Minkowski space-time as tangent space at every point. Thus, the Einstein 
universe and its tangent space (Minkowski space) correspond to the ground 
state of the Yang-Mills gauge field of gravity. Consequently, the deviations 
from the pure gauge potentials describe real gravity and induce in the 
classical limit deviations from the Minkowski space and the Einstein uni- 
verse, respectively. It is very interesting that in this way the topology of the 
universe is determined uniquely by that of the 3-sphere, presumably in 
consequence of the compactness of the group SU(2), the gauge potentials 
of which determine the space part of the metric. 

Following this line we decompose the gauge potentials as follows: 

(0) 
toNa = toN. +A~a (3) 

Then the metric (2) can be rewritten 

with 

(o) 
g.~ = g N~ + hN~ (4) 

and 

(o) (o) (o) 
gN~ = toNato ~ ~ (4a) 

(0) a "[- (0) a 
hN~, = tO N A~,a to ~ ANa  + Au'~Av,~ (4b) 

(o) 
Here g N~ represents the background (ground state) metric built up by the 

(o) 
pure gauge potentials to.a and h.~ describes the real gravity by the devi- 

(o) 
ations AN. of toN- from to N~. 

(o) 
For the determination of g N~ we start from the general representation 

(o) 
of toN~. The SU(2) part takes the form (Dehnen and Ghaboussi, 1987b) 

(o) 1 
to N~ = - -  (fh~l~ - pe iJkhjl~.klN + hAiAJAjlN) (5) 

g 
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(i, j, k = 1, 2, 3) with 

sin A 1 - cos A A - sin A 
f =  A ' p =  A2 , h -  A3 , (5a) 

and  the U(1)  pure  gauge potent ia l  reads 

(o) 1 
= - -  Aol~ (6) ('0 P" 0 g 

Inser t ing (5) and  (6) into (4a). we obta in  immedia te ly  

(o) 1 1 
g .~ = - g--~ aoi~aol~ + g~ [2PA,I.A iv + hi.hi v(1 - 2p)]  (7) 

In order  to find a s impler  fo rm of  the metric,  we substi tute 

Jt,(x ~) = a(x  ~)n,(x ~) (8) 

with 

' i nin' = 1 and n~l.n = 0 (8a) 

The " p u r e "  metr ic  (7) is then  

(o) 1 g l  ( 2 A2 n~l~nl~g ) g . ~ -  gSAOl~hol~+_-5 h l~hl~+4s in  (9) 

A2=AiA / 

With the new gauge funct ions  

X = A / 2 ,  0 = arccos(A3/A) 
(lO) 

~o = arctg(A2/A 0;  T = Ao/g 

the pure  metr ic  (9) is given by 

g . .  = -TI.TI.+ [Xi.Xl.+sin2x(Ol.Ol~+sin 2 0 ~pl.q~l~)] (11) 

and  the line e lement  takes the final fo rm 

ds 2= - d r 2 +  [dx2+sin2x(dO2+sin 20dqQ)] (12) 

Here  the wel l -known line e lement  of  the Einstein cosmos is reached in 
spherical  coordinates ,  wi thout  any restriction or gauge fixing. According to 
(10), the gauge funct ions Ai have the meaning  of  Car tes ian  space coordinates  
and  A0 cor responds  to the t im~coo rd ina t e .  Fur thermore ,  the value of  the 
gauge coupl ing  constant  g/2 determines  the reciprocal  radius of  the Einstein 
universe.  
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In the case of small gauge functions IAal<< 1 it immediately follows 
from (7) that 

(o) 1 1 
= - -  + ~-~ A,I~A ~1~ (13) g ~  -g2AOl~Aol~ 

This is the Minkowski metric r/~,  where Ao/g and Ai /g  can be identified 
immediately with the cartesian time and space coordinates, respectively, so 
that the coupling constant g does not appear in future. Obviously, this is 
the local tangent space to the Einstein cosmos for [xl<< 1 in (12). With 
Ao/g = x  ~ and A~/g = x  ~ ([x~l<< g- l )  the pure gauge potentials (5) and (6) 
read in this case 

(o) 
r = - 3  9 (14) 

Under the restriction to (13) and (14) one can show with the use of 
the Yang-Mills equations that the field h~. given by (4b) satisfies Einstein's 

(o) 
linearized field equations when lAnai<< toga =1;  furthermore, an 
infinitesimal gauge transformation induces an infinitesimal coordinate trans- 
formation of h,~ (Dehnen and Ghaboussi, 1986). The linearized field 
equations for A,a are analyzed in detail by Dehnen and Ghaboussi (1987a). 
The exact equations for A ~  and h~, describing the deviations from the 
Einstein universe (12) are under investigation. 
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